Repression by Ume6 Involves Recruitment of a Complex Containing Sin3 Corepressor and Rpd3 Histone Deacetylase to Target Promoters
نویسندگان
چکیده
Sin3 and Rpd3 negatively regulate a diverse set of yeast genes. A mouse Sin3-related protein is a transcriptional corepressor, and a human Rpd3 homolog is a histone deacetylase. Here, we show that Sin3 and Rpd3 are specifically required for transcriptional repression by Ume6, a DNA-binding protein that regulates genes involved in meiosis. A short region of Ume6 is sufficient to repress transcription, and this repression domain mediates a two-hybrid and physical interaction with Sin3. Coimmunoprecipitation and two-hybrid experiments indicate that Sin3 and Rpd3 are associated in a complex distinct from TFIID and Pol II holoenzyme. Rpd3 is specifically required for repression by Sin3, and artificial recruitment of Rpd3 results in repression. These results suggest that repression by Ume6 involves recruitment of a Sin3-Rpd3 complex and targeted histone deacetylation.
منابع مشابه
Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo.
Eukaryotic organisms contain a multiprotein complex that includes Rpd3 histone deacetylase and the Sin3 corepressor. The Sin3-Rpd3 complex is recruited to promoters by specific DNA-binding proteins, whereupon it represses transcription. By directly analyzing the chromatin structure of a repressed promoter in yeast cells, we demonstrate that transcriptional repression is associated with localize...
متن کاملIdentification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast.
The DNA-binding protein Ume6 is required for both repression and activation of meiosis-specific genes, through interaction with the Sin3 corepressor and Rpd3 histone deacetylase and the meiotic activator Ime1. Here we show that fusion of a heterologous activation domain to Ume6 is unable to convert it into a constitutive activator of early meiotic gene transcription, indicating that an addition...
متن کاملWidespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression.
The yeast Isw2 chromatin remodeling complex functions in parallel with the Sin3-Rpd3 histone deacetylase complex to repress early meiotic genes upon recruitment by Ume6p. For many of these genes, the effect of an isw2 mutation is partially masked by a functional Sin3-Rpd3 complex. To identify the full range of genes repressed or activated by these factors and uncover hidden targets of Isw2-depe...
متن کاملHistone deacetylase activity of Rpd3 is important for transcriptional repression in vivo.
Eukaryotic organisms from yeast to human contain a multiprotein complex that includes Rpd3 histone deacetylase and Sin3 corepressor. The Sin3-Rpd3 complex, when recruited to promoters by specific DNA-binding proteins, can direct transcriptional repression of specific classes of target genes. It has been proposed that the histone deacetylase activity of Rpd3 is important for repression, but dire...
متن کاملIn Saccharomyces cerevisiae, expression of arginine catabolic genes CAR1 and CAR2 in response to exogenous nitrogen availability is mediated by the Ume6 (CargRI)-Sin3 (CargRII)-Rpd3 (CargRIII) complex.
The products of three genes named CARGRI, CARGRII, and CARGRIII were shown to repress the expression of CAR1 and CAR2 genes, involved in arginine catabolism. CARGRI is identical to UME6 and encodes a regulator of early meiotic genes. In this work we identify CARGRII as SIN3 and CARGRIII as RPD3. The associated gene products are components of a high-molecular-weight complex with histone deacetyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 89 شماره
صفحات -
تاریخ انتشار 1997